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The osmium-catalyzed aminohydroxylation of olefins was first
discovered in 1976 by Sharpless and co-workersl remains the non-oxenoid reaction of oxaziridirie To the best of our knowledge,
method of choice for construction gf-amino alcohols. This the only previous report of a reaction in which both heteroatoms
structural motif is common to a variety of bioactive natural products of anN-sulfonyl oxaziridine are transferred to an organic substrate
and chiral reagents for stereoselective synthesis. However, givenwas an unexpected aminohydroxylation of indoles observed by
the poor regioselectivity observed in the osmium-catalyzed ami- Dmitrienko during studies toward a synthesis of the alkaloid
nohydroxylation of styrenésas well as the expense and toxicity FR900482° This reaction only occurred using electron-rich 2,3-
of osmium compounds, there has been significant interest in the dialkyl indoles, and other electron-rich olefins such as enamines
discovery of complementary protocols. Several groups have recentlyfailed to undergo aminohydroxylation.
reported palladium(ll)-catalyzed olefin aminohydroxylation utilizing In contrast, the scope of this new copper-catalyzed process seems
PhI(OAc), as the terminal oxidarit.In this communication, we to be significantly broader. Experiments probing the range of
report that copper(ll) salts catalyze the regioselective aminohy- styrenes that undergo this new reaction are summarized in Table

This new aminohydroxylation constitutes a rare example of a

droxylation of olefins usind\-sulfonyl oxaziridined. This process
represents a novel reaction of oxaziridines and a promising new
alternative to the known osmium- and palladium-catalyzed ami-
nohydroxylation methods.

2. Styrenes bearing electron-withdrawing (entry 2) and electron-
donating (entry 3)para substituents can be aminohydroxylated

Table 2. Aminohydroxylation of Styrenic Olefins

. ) o . . SO,Ph 2% Cu(TFA PhO,S Ph
The discovery of this new reactivity arose from our interest in ~ o-N""? 10% L|'4(MF>A)2 )
developing Lewis acid-catalyzed oxidation reactions. Hypothesizing ! X 1 /K/o
. . . : . . . Ph H CH.Cly, rt Ar
that Lewis acid activation of oxaziridinesvould increase their 5
elegtr_qph|I|C|ty and, consequently, their ability to epOX|d_|ze olefins, entry? olefin ime yield®  cisitrans®e
we initially explored the effect of metal salts on the reaction between
oxazirid_iqe_l and sty_re_ne (Table 1). As expected from earlier reports i ©/\ " 7% 1701
of oxaziridine reactivityf only a trace of styrene oxide is formed
in the absence of Lewis acidic additives even after extended reaction /©/\ .
times (entry 1). Upon addition of 10 mol % of Cu(OAchowever, 2 R 36h 3% 1.2:1
we observed the regioselective formation of amidahstead of N
the expected epoxide (entry 2). This new aminohydroxylation 3 /©/\ 6h 84% L1:1
reaction occurs in the presence of a variety of copper(ll) salts Meo
(entries 2-5). Using Cu(TFA), the most effective metal salt 4 @\/\ 65h 849 10:1
screened, efficient aminohydroxylation was observed at catalyst Me
loadings as low as 2 mol % (entry 6). Under our optimized “"e\@/\
L . . 5 11h 83% 19:1
conditions’ the addition of 10 mol % of HMPA increased the Me
solubility of the copper catalyst and improved the reproducibility .
of the reaction (entry 7?° 6 2h 5% 21:1
Table 1. Development of Optimized Aminohydroxylation o Me .
Conditions 7 ©/\/ 4h 85% 12:1
~-SOzPh catalyst PhOLS Ph
O—N o .
S I — <] N—( 8 1.5h 81% 35:1
Ph H 1 CHCly, rt PhA/O 2
9 OO A 5h 83% 16:1
% conversion® drb
try? dit time (h id inal isit
entry conditions ime (h)  epoxide  aminal cis:trans 104 Me 2h 84% 16:1
1 no catalyst 192 6 - - "
2 10 mol % of Cu(OAG) 24 - 62 181 ° "
3 10 mol % of Cu(OTf) 24 - 91 >91 114 A 2h 81% >10:1
4 10 mol % of CuCG) 24 - >95 1:1.6 Me
5 10 mol % of Cu(TFA) 24 - >95 251
6 2 mol ;y" of Cu(TFA) 24 4 92 3'3_:1 a8 Unless otherwise noted, reactions were performed using 1.5 equiv of
7 2 mol % of Cu(TFA} + 24 - >95 181 oxaziridine, 2 mol % of Cu(TFA) and 10 mol % of HMPA in CkCl,

10 mol % of HMPA

aReactions were performed with 1 equiv of styrene and 2 equiv of
oxaziridine in CHCI, (0.5 M) at ambient temperaturéConversions and
diastereomeric ratios were determinedlyNMR analysis of the unpurified
reaction mixture.
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(0.5 M) at ambient temperaturelsolated yields and diastereomeric ratios
represent the averaged results of two reproducible experinfdRasios were
determined by!H NMR analysis of the unpurified reaction mixture.
d Reaction was conducted with 10 mol % of Cu(TkA) CHyCl, (0.125
M) at 35°C. ¢ Refers to the 4,%ransisomers. Only traces of the 4¢5s-
isomers could be observed.
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Scheme 1 Table 3. Aminohydroxylations Using Non-styrenic Olefins
Proposed mechanism d.r.
[Cu2*] SO,Ph entry olefin product time  vyieldl cis:trans®
| | PhO,S Ph
0—N—S0,Ph [Cu?-N___Ph N R
—_—
—_— 5 14 rHex ™ X n-Hex YF’“ 24 h 15% 1.9:1
PR H PR __o /k/
P Ph 2 ESO
20 @ CE S—n 1h  72%  24:1
Scheme 2 o
Bs
75% ; N .
o X Ph _1"_, PhOzS\N Ph PhOzS\N_<Ph N '-Buo\ﬁz/"h 30min  71%  l4:1
10% Cu(TFA), e O Ao Re
20% HMPA . PRTN 40 TS . TPS NP 32h 6% 13:1
Ph/ﬁ 3 : x
Ph Ph 4 o
Ph 58% 2:1

a8 Reactions were performed using 2 mol % of Cu(TEand 10 mol %
easily, although the former require extended reaction times to of HMPA at ambient temperatur@ Reactions were performed using 10
achieve good yields. Substitution at tbeho and metapositions ggg?ﬁ;gugg‘%ﬁg i%mﬁl,\;g Ogn';:wP-A at 35C. ° Diastereomeric
ysis of the unpurified reaction
of the arene is also tolerated (entries 4 and 5), ascasnd mixture.
substituents on the alkene (entries 6 and 7). Cyclic (entry 8) and
condensed polycyclic styrenes (entry 9) are also excellent substrates [N summary, we have discovered a novel copper(ll)-catalyzed
for aminohydroxylation, as are tri- and tetrasubstituted styrenic reaction of oxaziridines that effects regioselective aminohydrox-
olefins (entries 10 and 11}. ylation of styrenes and electron-rich olefins. Studies to better
In order to rationalize this unusual reactivity, we initially elucidate the mechanism of this reaction, further explore the
considered a mechanism involving Lewis acid-catalyzed ring Substrate scope, and develop enantioselective aminohydroxylations
opening of a transient epoxide intermediate, as the copper(ll)- based on this new methodology are currently underway in our
catalyzed synthesis of 1,3-dioxolanes from aryl epoxides and laboratory.
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